2,543 research outputs found

    Database Engineering Processes with DB-MAIN

    Get PDF
    Software engineering needs more and more to be supported by CASE tools. Since databases are at the heart of information systems, they deserve a particular attention. More and more CASE tools allow method engineers to implement their own methodology and they allow users to record all their actions, with their rationales, in order to improve the quality of the design and the quality of the documentation of the design. DBMAIN is such a database oriented tool with a method description and a documentation generation facilities. But it has its particularities like its procedural non-deterministic Method Description Language, its well integrated multilevel histories and its userfriendly methodological engine

    Planets in Mean-Motion Resonances and the System Around HD45364

    Full text link
    In some planetary systems, the orbital periods of two of its members present a commensurability, usually known by mean-motion resonance. These resonances greatly enhance the mutual gravitational influence of the planets. As a consequence, these systems present uncommon behaviors, and their motions need to be studied with specific methods. Some features are unique and allow us a better understanding and characterization of these systems. Moreover, mean-motion resonances are a result of an early migration of the orbits in an accretion disk, so it is possible to derive constraints on their formation. Here we review the dynamics of a pair of resonant planets and explain how their orbits evolve in time. We apply our results to the HD 45365 planetary system.Comment: invited review, 17 pages, 6 figure

    Dynamics of Enceladus and Dione inside the 2:1 Mean-Motion Resonance under Tidal Dissipation

    Full text link
    In a previous work (Callegari and Yokoyama 2007, Celest. Mech. Dyn. Astr. vol. 98), the main features of the motion of the pair Enceladus-Dione were analyzed in the frozen regime, i.e., without considering the tidal evolution. Here, the results of a great deal of numerical simulations of a pair of satellites similar to Enceladus and Dione crossing the 2:1 mean-motion resonance are shown. The resonance crossing is modeled with a linear tidal theory, considering a two-degrees-of-freedom model written in the framework of the general three-body planar problem. The main regimes of motion of the system during the passage through resonance are studied in detail. We discuss our results comparing them with classical scenarios of tidal evolution of the system. We show new scenarios of evolution of the Enceladus-Dione system through resonance not shown in previous approaches of the problem.Comment: 36 pages, 12 figures. Accepted in Celestial Mechanics and Dynamical Astronom

    Imaging the symmetry breaking of molecular orbitals in carbon nanotubes

    Get PDF
    Carbon nanotubes have attracted considerable interest for their unique electronic properties. They are fascinating candidates for fundamental studies of one dimensional materials as well as for future molecular electronics applications. The molecular orbitals of nanotubes are of particular importance as they govern the transport properties and the chemical reactivity of the system. Here we show for the first time a complete experimental investigation of molecular orbitals of single wall carbon nanotubes using atomically resolved scanning tunneling spectroscopy. Local conductance measurements show spectacular carbon-carbon bond asymmetry at the Van Hove singularities for both semiconducting and metallic tubes, demonstrating the symmetry breaking of molecular orbitals in nanotubes. Whatever the tube, only two types of complementary orbitals are alternatively observed. An analytical tight-binding model describing the interference patterns of ? orbitals confirmed by ab initio calculations, perfectly reproduces the experimental results

    Dissipation in planar resonant planetary systems

    Full text link
    Close-in planetary systems detected by the Kepler mission present an excess of periods ratio that are just slightly larger than some low order resonant values. This feature occurs naturally when resonant couples undergo dissipation that damps the eccentricities. However, the resonant angles appear to librate at the end of the migration process, which is often believed to be an evidence that the systems remain in resonance. Here we provide an analytical model for the dissipation in resonant planetary systems valid for low eccentricities. We confirm that dissipation accounts for an excess of pairs that lie just aside from the nominal periods ratios, as observed by the Kepler mission. In addition, by a global analysis of the phase space of the problem, we demonstrate that these final pairs are non-resonant. Indeed, the separatrices that exist in the resonant systems disappear with the dissipation, and remains only a circulation of the orbits around a single elliptical fixed point. Furthermore, the apparent libration of the resonant angles can be explained using the classical secular averaging method. We show that this artifact is only due to the severe damping of the amplitudes of the eigenmodes in the secular motion.Comment: 18 pages, 20 figures, accepted to A&

    Stable manifolds and homoclinic points near resonances in the restricted three-body problem

    Full text link
    The restricted three-body problem describes the motion of a massless particle under the influence of two primaries of masses 1μ1-\mu and μ\mu that circle each other with period equal to 2π2\pi. For small μ\mu, a resonant periodic motion of the massless particle in the rotating frame can be described by relatively prime integers pp and qq, if its period around the heavier primary is approximately 2πp/q2\pi p/q, and by its approximate eccentricity ee. We give a method for the formal development of the stable and unstable manifolds associated with these resonant motions. We prove the validity of this formal development and the existence of homoclinic points in the resonant region. In the study of the Kirkwood gaps in the asteroid belt, the separatrices of the averaged equations of the restricted three-body problem are commonly used to derive analytical approximations to the boundaries of the resonances. We use the unaveraged equations to find values of asteroid eccentricity below which these approximations will not hold for the Kirkwood gaps with q/pq/p equal to 2/1, 7/3, 5/2, 3/1, and 4/1. Another application is to the existence of asymmetric librations in the exterior resonances. We give values of asteroid eccentricity below which asymmetric librations will not exist for the 1/7, 1/6, 1/5, 1/4, 1/3, and 1/2 resonances for any μ\mu however small. But if the eccentricity exceeds these thresholds, asymmetric librations will exist for μ\mu small enough in the unaveraged restricted three-body problem

    Evolutionary Dynamics While Trapped in Resonance: A Keplerian Binary System Perturbed by Gravitational Radiation

    Get PDF
    The method of averaging is used to investigate the phenomenon of capture into resonance for a model that describes a Keplerian binary system influenced by radiation damping and external normally incident periodic gravitational radiation. The dynamical evolution of the binary orbit while trapped in resonance is elucidated using the second order partially averaged system. This method provides a theoretical framework that can be used to explain the main evolutionary dynamics of a physical system that has been trapped in resonance.Comment: REVTEX Style, Submitte

    Carbon Nanotubes Synthesized in Channels of Alpo4-5 Single Crystals : First X-Ray Scattering Investigations

    Full text link
    Following the synthesis of aligned single-wall carbon nanotubes in the channels of AlPO4-5 zeolite single crystals, we present the first X-ray diffraction and diffuse scattering results. They can be analysed in terms of a partial filling of the zeolite channels by nanotubes with diameter around 4A. The possible selection of only one type of nanotube during the synthesis, due to the constraints imposed by the zeolite host, is discussed.Comment: to appear in Solid State Com

    Low frequency Raman studies of multi-wall carbon nanotubes: experiments and theory

    Full text link
    In this paper, we investigate the low frequency Raman spectra of multi-wall carbon nanotubes (MWNT) prepared by the electric arc method. Low frequency Raman modes are unambiguously identified on purified samples thanks to the small internal diameter of the MWNT. We propose a model to describe these modes. They originate from the radial breathing vibrations of the individual walls coupled through the Van der Waals interaction between adjacent concentric walls. The intensity of the modes is described in the framework of bond polarization theory. Using this model and the structural characteristics of the nanotubes obtained from transmission electron microscopy allows to simulate the experimental low frequency Raman spectra with an excellent agreement. It suggests that Raman spectroscopy can be as useful regarding the characterization of MWNT as it is in the case of single-wall nanotubes.Comment: 4 pages, 2 eps fig., 2 jpeg fig., RevTex, submitted to Phys. Rev.
    corecore